Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Mol Ecol ; 32(11): 2715-2731, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36814135

RESUMO

In oceanic ecosystems, the nature of barriers to gene flow and the processes by which populations may become isolated are different from the terrestrial environment, and less well understood. In this study we investigate a highly mobile species (the sperm whale, Physeter macrocephalus) that is genetically differentiated between an open North Atlantic population and the populations in the Mediterranean Sea. We apply high-resolution single nucleotide polymorphism (SNP) analysis to study the nature of barriers to gene flow in this system, assessing the putative boundary into the Mediterranean (Strait of Gibraltar and Alboran Sea region), and including novel analyses on structuring among sperm whale populations within the Mediterranean basin. Our data support a recent founding of the Mediterranean population, around the time of the last glacial maximum, and show concerted historical demographic profiles in both the Atlantic and the Mediterranean. In each region there is evidence for a population decline around the time of the founder event. The largest decline was seen within the Mediterranean Sea where effective population size is substantially lower (especially in the eastern basin). While differentiation is strongest at the Atlantic/Mediterranean boundary, there is also weaker but significant differentiation between the eastern and western basins of the Mediterranean Sea. We propose, however, that the mechanisms are different. While post-founding gene flow was reduced between the Mediterranean and Atlantic populations, within the Mediterranean an important factor differentiating the basins is probably a greater degree of admixture between the western basin and the North Atlantic and some level of isolation between the western and eastern Mediterranean basins. Subdivision within the Mediterranean Sea exacerbates conservation concerns and will require consideration of what distinct impacts may affect populations in the two basins.


Assuntos
Ecossistema , Cachalote , Animais , Cachalote/genética , Mar Mediterrâneo , Genômica , Densidade Demográfica , Variação Genética/genética
3.
Sci Rep ; 12(1): 6592, 2022 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-35449183

RESUMO

Decompression sickness (DCS) is a clinical syndrome caused by the formation of systemic intravascular and extravascular gas bubbles. The presence of these bubbles in blood vessels is known as gas embolism. DCS has been described in humans and animals such as sea turtles and cetaceans. To delve deeper into DCS, experimental models in terrestrial mammals subjected to compression/decompression in a hyperbaric chamber have been used. Fish can suffer from gas bubble disease (GBD), characterized by the formation of intravascular and extravascular systemic gas bubbles, similarly to that observed in DCS. Given these similarities and the fact that fish develop this disease naturally in supersaturated water, they could be used as an alternative experimental model for the study of the pathophysiological aspect of gas bubbles. The objective of this study was to obtain a reproducible model for GBD in fish by an engineering system and a complete pathological study, validating this model for the study of the physiopathology of gas related lesions in DCS. A massive and severe GBD was achieved by exposing the fish for 18 h to TDG values of 162-163%, characterized by the presence of severe hemorrhages and the visualization of massive quantities of macroscopic and microscopic gas bubbles, systemically distributed, circulating through different large vessels of experimental fish. These pathological findings were the same as those described in small mammals for the study of explosive DCS by hyperbaric chamber, validating the translational usefulness of this first fish model to study the gas-bubbles lesions associated to DCS from a pathological standpoint.


Assuntos
Doença da Descompressão , Mergulho , Embolia Aérea , Tartarugas , Animais , Peixes , Mamíferos , Pressão
4.
Animals (Basel) ; 12(4)2022 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-35203216

RESUMO

An adult female Sowerby's beaked whale was found floating dead in Hermigua (La Gomera, Canary Islands, Spain) on 7 December 2016. Severe traumas of unknown aetiology were attributed, and the gross and microscopic findings are consistent with catastrophic trauma as a cause of death. Rib fractures affected the intercostals, transverse thoracis skeletal muscles, and thoracic rete mirabile. Degenerated muscle fibres were extruded to flow into vascular and lymphatic vessels travelling to several anatomic locations into the thoracic cavity, including the lungs, where they occluded the small lumen of pulmonary microvasculature. A pulmonary and systemic skeletal muscle embolism was diagnosed, constituting the first description of this kind of embolism in an animal. The only previous description has been reported in a woman after peritoneal dialysis. Skeletal pulmonary embolism should be considered a valuable diagnostic for different types of trauma in vivo in wild animals. This is especially valuable when working with decomposed carcasses, as in those cases, it is not always feasible to assess other traumatic evidence.

5.
Animals (Basel) ; 11(2)2021 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-33572177

RESUMO

Compared with terrestrial mammals, marine mammals possess increased muscle myoglobin concentrations (Mb concentration, g Mb · 100g-1 muscle), enhancing their onboard oxygen (O2) stores and their aerobic dive limit. Although myoglobin is not homogeneously distributed, cetacean muscle O2 stores have been often determined by measuring Mb concentration from a single muscle sample (longissimus dorsi) and multiplying that value by the animal's locomotor muscle or total muscle mass. This study serves to determine the accuracy of previous cetacean muscle O2 stores calculations. For that, body muscles from three delphinid species: Delphinus delphis, Stenella coeruleoalba, and Stenella frontalis, were dissected and weighed. Mb concentration was calculated from six muscles/muscle groups (epaxial, hypaxial and rectus abdominis; mastohumeralis; sternohyoideus; and dorsal scalenus), each representative of different functional groups (locomotion powering swimming, pectoral fin movement, feeding and respiration, respectively). Results demonstrated that the Mb concentration was heterogeneously distributed, being significantly higher in locomotor muscles. Locomotor muscles were the major contributors to total muscle O2 stores (mean 92.8%) due to their high Mb concentration and large muscle masses. Compared to this method, previous studies assuming homogenous Mb concentration distribution likely underestimated total muscle O2 stores by 10% when only considering locomotor muscles and overestimated them by 13% when total muscle mass was considered.

6.
Front Vet Sci ; 7: 567258, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33195545

RESUMO

Estimating cetacean interactions with fishery activities is challenging. Bycatch and chronic entanglements are responsible for thousands of cetacean deaths per year globally. This study represents the first systematic approach to the postmortem investigation of fishery interactions in stranded cetaceans in the Canary Islands. We retrospectively studied 586 cases necropsied between January 2000 and December 2018. Of the cases with a known cause of death, 7.4% (32/453) were due to fishery interactions, and the Atlantic spotted dolphin (Stenella frontalis) was the most affected species [46.9% (15/32)]. Three types of fishery interactions were recognized by gross findings: bycatch [65.6% (21/32)], chronic entanglements [18.8% (6/32)], and fishermen aggression [15.6% (5/32)]. Among the bycaught cases, we differentiated the dolphins that died because of ingestion of longline hooks [23.8% (5/21)] from those that died because of fishing net entrapments [76.2% (16/21)], including dolphins that presumably died at depth due to peracute underwater entrapment (PUE) [37.5% (6/16)], dolphins that were hauled out alive and suffered additional trauma during handling [43.8% (7/16)], and those that were released alive but became stranded and died because of fishery interactions [18.7% (3/16)]. Gross and histologic findings of animals in each group were presented and compared. The histological approach confirmed gross lesions and excluded other possible causes of death. Cetaceans in good-fair body condition and shallow diving species were significantly more affected by fishery interactions, in agreement with the literature. Low rates of fishery interactions have been described, compared with other regions. However, within the last few years, sightings of entangled live whales, especially the minke whale (Balaenoptera acutorostrata) and Bryde's whale (B. edeni), have increased. This study contributes to further improvement of the evaluation of different types of fishery interactions and may facilitate the enforcement of future conservation policies to preserve cetacean populations in the Canary Islands.

7.
Sci Rep ; 10(1): 14752, 2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32901077

RESUMO

Lipids are biomolecules present in all living organisms that, apart from their physiological functions, can be involved in different pathologies. One of these pathologies is fat embolism, which has been described histologically in the lung of cetaceans in association with ship strikes and with gas and fat embolic syndrome. To assess pathological lung lipid composition, previous knowledge of healthy lung tissue lipid composition is essential; however, these studies are extremely scarce in cetaceans. In the present study we aimed first, to characterize the lipids ordinarily present in the lung tissue of seven cetacean species; and second, to better understand the etiopathogenesis of fat embolism by comparing the lipid composition of lungs positive for fat emboli, and those negative for emboli in Physeter macrocephalus and Ziphius cavirostris (two species in which fat emboli have been described). Results showed that lipid content and lipid classes did not differ among species or diving profiles. In contrast, fatty acid composition was significantly different between species, with C16:0 and C18:1ω9 explaining most of the differences. This baseline knowledge of healthy lung tissue lipid composition will be extremely useful in future studies assessing lung pathologies involving lipids. Concerning fat embolism, non-significant differences could be established between lipid content, lipid classes, and fatty acid composition. However, an unidentified peak was only found in the chromatogram for the two struck whales and merits further investigation.


Assuntos
Embolia Gordurosa/patologia , Embolia Gordurosa/veterinária , Lipídeos/análise , Pulmão/patologia , Embolia Pulmonar/patologia , Embolia Pulmonar/veterinária , Animais , Mergulho , Embolia Gordurosa/etiologia , Lipídeos/efeitos adversos , Pulmão/metabolismo , Filogenia , Embolia Pulmonar/etiologia , Baleias
8.
Sci Rep ; 10(1): 8251, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32427895

RESUMO

Fat embolism is the mechanical blockage of blood vessels by circulating fat particles. It is frequently related to traumas involving soft tissues and fat-containing bones. Different techniques have been used for decades to demonstrate histologically fat emboli, being the extremely toxic post-fixation with osmium tetroxide one of the most used techniques in the last decades. In the present study, the osmium tetroxide technique was compared qualitatively and quantitatively, for the first time, with chromic acid and Oil Red O frozen techniques  for histological fat emboli detection in the lungs of eight sperm whales that died due to ship strikes. This was also the first time that chromic acid technique was tested in cetaceans. Results showed that the three techniques were valuable for the histological detection of fat embolism in cetaceans, even when tissues presented advanced autolysis and had been stored in formaldehyde for years. Although quantitative differences could not be established, the Oil Red O frozen technique showed the lowest quality for fat emboli staining. On the contrary, the chromic acid technique was proven to be a good alternative to osmium tetroxide due to its slightly lower toxicity, its equivalent or even superior capacity of fat emboli detection, and its significantly lower economic cost.


Assuntos
Embolia Gordurosa/veterinária , Técnicas Histológicas/métodos , Pulmão/irrigação sanguínea , Embolia Pulmonar/veterinária , Animais , Cetáceos/metabolismo , Embolia Gordurosa/patologia , Pulmão/química , Pulmão/patologia , Embolia Pulmonar/patologia , Coloração e Rotulagem
9.
Animals (Basel) ; 10(2)2020 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-32013196

RESUMO

Capture myopathy (CM) is described in wild animals as a metabolic syndrome resulting from the extreme stress suffered during and after capture, handling, restraint, and transport. Although CM has been characterized in many species of cetaceans, descriptions of cardiac injury-an important component of this syndrome, and, according to previous authors, comparable to the existing human pathology so-called stress cardiomyopathy (SCMP)-are still rare. Therefore, the main aim of this report is to illustrate, for the first time, the biochemical analysis, and gross, histopathological, histochemical and immunohistochemical features of CM, and more specifically of the SCMP involved in this syndrome, caused by the live-stranding and consequent rehabilitation attempt, for a certain period of time, in a juvenile male Risso's dolphin (Grampus griseus). The animal presented elevated values of creatine kinase, cardiac troponin I and blood urea nitrogen, with some variations during the rehabilitation period. Histologically, we detected vascular changes and acute degenerative lesions analogous to the ones observed in humans with SCMP. We consider this study to be an important contribution to the study of cetaceans since it could help in decision-making and treatment procedures during live-strandings and improve conservation efforts by reducing the mortality of these animals.

10.
J Morphol ; 281(3): 377-387, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32039518

RESUMO

Some modifications in the vascular system of marine mammals provide adaptive advantages for diving. This study analyses the organisation of the aortic wall in dolphins, observing artery changes in volume and blood pressure for diving behaviour. Samples of three aortic segments (ascending, thoracic and abdominal) of three dolphin species were processed for histological and morphometric studies. The three dolphin species used, striped dolphin (Stenella coeruleoalba), Atlantic spotted dolphin (Stenella frontalis) and common dolphin (Delphinus delphis), have shallow or intermediate diving habits. Our results indicated that the components of the aortic wall of the dolphins had different dispositions in the three selected segments. The aortic wall decreased in thickness along its length due to a loss of the lamellar units in the tunica media and a thinning of the main elements of the lamellar units along the artery. The life stage had little influence on the thickness of the aortic wall except for the ascending aorta. The weight, body length, species or sex of the specimen did not significantly influence the thickness of the wall or the lamellar units. In summary, the histological and morphometric aortic structure in dolphins, in relation to the studied parameters, seems to be similar to that previously described of terrestrial mammals such as pigs, except for a larger difference in the proportion of lamellar units between the ascending and thoracic segments.


Assuntos
Adaptação Fisiológica , Aorta/anatomia & histologia , Mergulho/fisiologia , Golfinhos/anatomia & histologia , Golfinhos/fisiologia , Stenella/anatomia & histologia , Stenella/fisiologia , Actinas/metabolismo , Animais , Feminino , Estágios do Ciclo de Vida , Masculino , Especificidade da Espécie
11.
Rapid Commun Mass Spectrom ; 31(18): 1551-1557, 2017 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-28700111

RESUMO

RATIONALE: Isotope ratios from skin samples have been widely used to study cetacean trophic ecology. Usually, isotopic skin uniformity has been assumed, despite the heterogeneity of this tissue. This study aims to investigate (1) regional isotopic variation within the skin in cetaceans, and (2) isotopic variation among internal tissues. METHODS: Stable carbon (δ13 C values) and nitrogen (δ15 N values) isotope ratios were measured in 11 skin positions in 10 common dolphins (Delphinus delphis) and 9 striped dolphins (Stenella coeruleoalba). In addition, the isotope ratios in the muscle, liver and kidney of both species were determined and compared with those from the skin and from all tissues combined. The signatures were determined by means of elemental analyser/isotope ratio mass spectrometry (EA/IRMS). RESULTS: In both species, no differences between isotope ratios of the skin positions were found. Moreover, the isotope ratios of skin were similar to those of muscle. In contrast, liver and kidney showed higher isotope ratios than muscle and skin. CONCLUSIONS: Isotopic homogeneity within the skin suggests that the isotope ratios of a sample from a specific skin position can be considered representative of the ratios from the entire skin tissue in dolphins. This conclusion validates the results of previous stable isotope analyses in dolphins that used skin samples as representative of the whole skin tissue. Isotopic similarities or dissimilarities among tissues should be considered when analysing different tissues and comparing results from the same or different species.


Assuntos
Isótopos de Carbono/análise , Isótopos de Nitrogênio/análise , Pele/química , Animais , Golfinhos Comuns , Feminino , Fígado/química , Masculino , Espectrometria de Massas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...